Can perfluoroalkyl acids biodegrade in the rumen simulation technique (RUSITEC)?
نویسندگان
چکیده
BACKGROUND The behaviour of perfluoroalkyl acids (PFAAs) in tissues of ruminants has been shown to differ from that of monogastrics (J Agric Food Chem 61(12):2903-2912 doi:10.1021/jf304680j, 2013; J Agric Food Chem 62(28):6861-6870, 2014). This may be a consequence of the complex microbial ecosystem in the rumen. To evaluate this hypothesis, the recovery of PFAAs was studied using the rumen simulation technique as an indication for biodegradation in rumen. The PFAA-recovery from a microbial fermentation of feed containing PFAAs was compared to the same feed in the absence of ruminal microorganisms (MOs). RESULTS Release of PFAAs from feed into fermentation fluid was found to be faster for perfluorobutane sulfonic acid (PFBS) than for perfluorooctane sulfonic acid (PFOS). Differences between perfluoroalkyl carboxylic acids (PFCAs) could not be observed. Proportions of PFAAs recovered in the fermentation fluids decreased by increasing chain lengths for the perfluoroalkyl sulfonic acids (PFSAs) (31 % PFBS, 28 % perfluorohexane sulfonic acid [PFHxS], 20 % perfluoroheptane sulfonic acid [PFHpS], 11 % PFOS) and PFCAs (33 % perfluorohexane carboxylic acid [PFHxA], 32 % perfluoroheptane carboxylic acid [PFHpA], 24 % perfluorooctanoic acid [PFOA]). In contrast, levels in feed increased with increasing chain length for both PFSAs and PFCAs. CONCLUSION The attachment of MOs to feed particles was assumed to account for higher PFAA levels in fermented feeds and for lower levels in the fermentation fluids. Total recovery of PFAAs was significantly lower in presence of ruminal MOs compared to experimental procedure under sterile conditions. Although, there are optimal reductive conditions for MOs in rumen, our results do not univocally indicate whether PFAAs were degraded by ruminal fermentation.
منابع مشابه
The application of rumen simulation technique (RUSITEC) for studying dynamics of the bacterial community and metabolome in rumen fluid and the effects of a challenge with Clostridium perfringens
The rumen simulation technique (RUSITEC) is a well-established semicontinuous in vitro model for investigating ruminal fermentation; however, information on the stability of the ruminal bacterial microbiota and metabolome in the RUSITEC system is rarely available. The availability of high resolution methods, such as high-throughput sequencing and metabolomics improve our knowledge about the rum...
متن کاملComparison of microbial fermentation of high- and low-forage diets in Rusitec, single-flow continuous-culture fermenters and sheep rumen.
Eight Rusitec and eight single-flow continuous-culture fermenters (SFCCF) were used to compare the ruminal fermentation of two diets composed of alfalfa hay and concentrate in proportions of 80 : 20 (F80) and 20 : 80 (F20). Results were validated with those obtained previously in sheep fed the same diets. Rusitec fermenters were fed once daily and SFCCF twice, but liquid dilution rates were sim...
متن کاملLower Methane Emissions from Yak Compared with Cattle in Rusitec Fermenters
Globally methane (CH4) emissions from ruminant livestock account for 29% of total CH4 emissions. Inherited variation about CH4 emissions of different animal species might provide new opportunity for manipulating CH4 production. Six rumen-simulating fermenters (Rusitec) were set up for this study lasting for 16 d. The diet consisted of forage to concentrate ratio of 50:50 with barley straw as th...
متن کاملRedirection of Metabolic Hydrogen by Inhibiting Methanogenesis in the Rumen Simulation Technique (RUSITEC)
A decrease in methanogenesis is expected to improve ruminant performance by allocating rumen metabolic hydrogen ([2H]) to more energy-rendering fermentation pathways for the animal. However, decreases in methane (CH4) emissions of up to 30% are not always linked with greater performance. Therefore, the aim of this study was to understand the fate of [2H] when CH4 production in the rumen is inhi...
متن کاملEffect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile
This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were supplemented with sunflower oil (2%) only, or sunflower oil (2%) in combination with fish oil (1%) or alg...
متن کامل